Maximum swimming speeds of sailfish and three other large marine predatory fish species based on muscle contraction time and stride length: a myth revisited

نویسندگان

  • Morten B. S. Svendsen
  • Paolo Domenici
  • Stefano Marras
  • Jens Krause
  • Kevin M. Boswell
  • Ivan Rodriguez-Pinto
  • Alexander D. M. Wilson
  • Ralf H. J. M. Kurvers
  • Paul E. Viblanc
  • Jean S. Finger
  • John F. Steffensen
چکیده

Billfishes are considered to be among the fastest swimmers in the oceans. Previous studies have estimated maximum speed of sailfish and black marlin at around 35 m s-1 but theoretical work on cavitation predicts that such extreme speed is unlikely. Here we investigated maximum speed of sailfish, and three other large marine pelagic predatory fish species, by measuring the twitch contraction time of anaerobic swimming muscle. The highest estimated maximum swimming speeds were found in sailfish (8.3±1.4 m s-1), followed by barracuda (6.2±1.0 m s-1), little tunny (5.6±0.2 m s-1) and dorado (4.0±0.9 m s-1); although size-corrected performance was highest in little tunny and lowest in sailfish. Contrary to previously reported estimates, our results suggest that sailfish are incapable of exceeding swimming speeds of 10-15 m s-1, which corresponds to the speed at which cavitation is predicted to occur, with destructive consequences for fin tissues.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Juvenile coho salmon locomotion and mosaic muscle are modified by 3',3',5'-tri-iodo-L-thyronine (T3).

Studies of maximum aerobic swimming performance in smolting juvenile salmonids indicate that these animals may be aerobically compromised during downstream migration. To test our hypothesis that hyperthyroid status contributes to decreased swimming performance through modification of muscle contractility in juvenile (112 mm mean total length) coho salmon (Oncorhynchus kisutch), we measured swim...

متن کامل

Variation in speed, gait characteristics and microhabitat use in lacertid lizards.

We quantified four gait characteristics (stride length, stride frequency, step length and floating distance) over a range of running speeds in 11 lacertid lizard species known to vary in maximal sprint speed and microhabitat use. For each species, we measured snout-vent length (SVL), body mass and hindlimb length. We tested which variables determine sprint speed, how each species modulates spri...

متن کامل

Contraction dynamics and power production of pink muscle of the scup (Stenotomus chrysops).

Although the contribution of red muscle to sustained swimming in fish has been studied in detail in recent years, the role of pink myotomal muscle has not received attention. Pink myotomal muscle in the scup (Stenotomus chrysops) lies just medial to red muscle, has the same longitudinal fibre orientation and is recruited along with the red muscle during steady sustainable swimming. However, pin...

متن کامل

Assessment of Accumulation and Potential Health Risk of Cr, Mn, Fe, Cu, and Zn in Fish from North-Eastern Mediterranean Sea

Heavy metal accumulation in aquatic organisms has been an important issue due to environmental pollution resulting from anthropogenic activities. In this study, Cr, Mn, Fe, Cu, and Zn in the selected fish species (Mullus barbatus, Solea solea, and Siganus rivulatus) from three consecutive bays (İskenderun, Mersin, and Antalya from North-Eastern Mediterranean Sea) were considered to provide some...

متن کامل

Swimming speeds of larval coral reef fishes: impacts on self-recruitment and dispersal

The dispersal of larvae during their time in the pelagic environment is critically important to our understanding of marine populations. Recent publications have highlighted the potential importance of larval behaviour in influencing dispersal patterns of larval reef fishes. However, it has not been clearly established if their abilities are of a magnitude comparable to the potential effects of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016